Telegram Group & Telegram Channel
Как бы вы объяснили отличия глубокого обучения от обычного (машинного обучения)?

Глубокое обучение и машинное обучение — это подвиды методов искусственного интеллекта. Вот какие различия между ними можно назвать:

▪️Структура моделей
В глубоких нейронных сетях используются многослойные архитектуры.

▪️Объём данных
Глубокое обучение требует больших объёмов данных для эффективного обучения.

▪️Аппаратные требования
Из-за сложности нейронных сетей глубокое обучение обычно требует больше вычислительных ресурсов. Хорошо подходят графические процессоры (GPU), способные к параллелизации.

▪️Автоматизация извлечения признаков
В глубоких сетях слои автоматически находят иерархию признаков в данных, что снижает необходимость в ручной обработке данных.

#глубокое_обучение



tg-me.com/ds_interview_lib/672
Create:
Last Update:

Как бы вы объяснили отличия глубокого обучения от обычного (машинного обучения)?

Глубокое обучение и машинное обучение — это подвиды методов искусственного интеллекта. Вот какие различия между ними можно назвать:

▪️Структура моделей
В глубоких нейронных сетях используются многослойные архитектуры.

▪️Объём данных
Глубокое обучение требует больших объёмов данных для эффективного обучения.

▪️Аппаратные требования
Из-за сложности нейронных сетей глубокое обучение обычно требует больше вычислительных ресурсов. Хорошо подходят графические процессоры (GPU), способные к параллелизации.

▪️Автоматизация извлечения признаков
В глубоких сетях слои автоматически находят иерархию признаков в данных, что снижает необходимость в ручной обработке данных.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/672

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Библиотека собеса по Data Science | вопросы с собеседований from tr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA